IGFTT: towards an efficient alternative to SIFT and SURF

نویسندگان

  • Ícaro Oliveira de Oliveira
  • Keiko Veronica Ono
چکیده

The invariant feature detectors are essential components in many computer vision applications, such as tracking, simultaneous localization and mapping (SLAM), image search, machine vision, object recognition, 3D reconstruction from multiple images, augmented reality, stereo vision, and others. However, it is very challenging to detect high quality features while maintaining a low computational cost. Scale-Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF) algorithms exhibit great performance under a variety of image transformations, however these methods rely on costly keypoint’s detection. Recently, fast and efficient variants such as Binary Robust Invariant Scalable Keypoints (BRISK) and Oriented Fast and Rotated BRIEF (ORB) were developed to offset the computational burden of these traditional detectors. In this paper, we propose to improve the Good Features to Track (GFTT) detector, coined IGFTT. It approximates or even outperforms the state-of-art detectors with respect to repeatability, distinctiveness, and robustness, yet can be computed much faster than Maximally Stable Extremal Regions (MSER), SIFT, BRISK, KAZE, Accelerated KAZE (AKAZE) and SURF. This is achieved by using the search of maximal-minimum eigenvalue in the image on scale-space and a new orientation extraction method based on eigenvectors. A comprehensive evaluation on standard datasets shows that IGFTT achieves quite a high performance with a computation time comparable to state-of-the-art real-time features. The proposed method shows exceptionally good performance compared to SURF, ORB, GFTT, MSER, Star, SIFT, KAZE, AKAZE and BRISK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-SURF: A Robust Local Image Descriptor

SIFT-like representations are considered as being most resistant to common deformations, although their computational burden is heavy for low-computation applications such as mobile image retrieval. H. Bay et. al. proposed an efficient implementation of SIFT called SURF. Although this descriptor has been able to represent the nature of some underlying image patterns, it is not enough to represe...

متن کامل

SURF-ing a Model of Spatiotemporal Saliency

Zhai and Shah (2006) proposed a model of spatiotemporal saliency using a combination of temporal and spatial attention models. The temporal model utilized Lowe’s SIFT (2004) to compute feature points and the correspondences between them in successive frames. Bay, Tuytelaars, & Van Gool introduced SURF (2006) as an alternative feature detector and descriptor. The authors of SURF show that it is ...

متن کامل

Recognition using SIFT and its Variants on Improved Segmented Iris

Iris is one of the most reliable biometric traits due to its stability and randomness. Iris is transformed to polar coordinates by the conventional recognition systems. They perform well for the cooperative databases, but the performance deteriorates for the non-cooperative irises. In addition to this, aliasing effect is introduced as a result of transforming iris to polar domain. In this thesi...

متن کامل

An Efficient Finger-Knuckle-Print Based Recognition System Fusing SIFT and SURF Matching Scores

This paper presents a novel combination of local-local information for an efficient finger-knuckle-print (FKP) based recognition system which is robust to scale and rotation. The non-uniform brightness of the FKP due to relatively curvature surface is corrected and texture is enhanced. The local features of the enhanced FKP are extracted using the scale invariant feature transform (SIFT) and th...

متن کامل

Face recognition using SURF features

The Scale Invariant Feature Transform (SIFT) proposed by David G. Lowe has been used in face recognition and proved to perform well. Recently, a new detector and descriptor, named Speed-Up Robust Features (SURF) suggested by Herbert Bay, attracts people’s attentions. SURF is a scale and in-plane rotation invariant detector and descriptor with comparable or even better performance with SIFT. Bec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018